2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》10月10日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。
單選題
1、下列函數(shù)中,為減函數(shù)的是()
- A:
- B:
- C:
- D:
答 案:C
解 析:由對(duì)數(shù)函數(shù)的性質(zhì)可知,當(dāng)?shù)讛?shù)大于0小于1時(shí),在定義域內(nèi),對(duì)數(shù)函數(shù)為減函數(shù).
2、參數(shù)方程(為參數(shù))表示的圖形為()
- A:直線
- B:圓
- C:橢圓
- D:雙曲線
答 案:B
解 析:即半徑為1的圓,圓心在原點(diǎn)
3、過(guò)點(diǎn)(-2,2)與直線x+3y-5=0平行的直線是()
- A:x+3y-4=0
- B:3x+y+4=0
- C:x+3y+8=0
- D:3x-y+8=0
答 案:A
解 析:所求直線與x+3y-5=0平行,可設(shè)所求直線為x+3y+c=0,將點(diǎn)(一2,2)帶入直線方程,故-2+3×2+c=0,解得c=-4,因此所求直線為線為x+3y-4=0.
4、對(duì)滿足a>b的任意兩個(gè)非零實(shí)數(shù),下列不等式成立的是() ?
- A:
- B:
- C:
- D:
答 案:D
解 析:A錯(cuò)誤,例如-2>4,而 B錯(cuò)誤,例如:-10>100,而 C錯(cuò)誤,例如:-1>-2,而
主觀題
1、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點(diǎn)((1,f(1))處的切線方程;
(II)求f(x)的極值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得當(dāng)時(shí),f'(x)
2、已知數(shù)列的前n項(xiàng)和 求證:是等差數(shù)列,并求公差和首項(xiàng)。 ?
答 案: ?
3、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.
答 案:由已知得解得
4、設(shè)函數(shù)f(x)= (Ⅰ)求f(x)的單調(diào)區(qū)間; (Ⅱ)求 f(x)的極值
答 案:(Ⅰ)函數(shù)的定義域?yàn)?img src="https://img2.meite.com/questions/202303/28642286bee9cc3.png" /> (Ⅱ) ?
填空題
1、不等式的解集為() ?
答 案:
解 析:
2、橢圓的中心在原點(diǎn),一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn)分別是直線x+3y-6與兩坐標(biāo)軸的交點(diǎn),則此橢圓的標(biāo)準(zhǔn)方程為() ?
答 案:
解 析:原直線方程可化為交點(diǎn)(6,0),(0,2). 當(dāng)點(diǎn)(6,0)是橢圓一個(gè)焦點(diǎn),點(diǎn)(0,2) 是橢圓一個(gè)頂點(diǎn)時(shí),c=6,b=2,當(dāng)點(diǎn)(0,2) 是橢圓一個(gè)焦點(diǎn),(6,0) 是橢圓一個(gè)頂點(diǎn)時(shí),c=2,b-6,