133職教網(wǎng):包含各種考證等職教知識

網(wǎng)站首頁

您的位置:首頁 學歷類成考高起點 → 2023年10月10日成考高起點每日一練《數(shù)學(理)》

2023年10月10日成考高起點每日一練《數(shù)學(理)》

2023/10/10 作者:匿名 來源:本站整理

2023年成考高起點每日一練《數(shù)學(理)》10月10日專為備考2023年數(shù)學(理)考生準備,幫助考生通過每日堅持練習,逐步提升考試成績。

單選題

1、下列函數(shù)中,為減函數(shù)的是()

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由對數(shù)函數(shù)的性質(zhì)可知,當?shù)讛?shù)大于0小于1時,在定義域內(nèi),對數(shù)函數(shù)為減函數(shù).

2、參數(shù)方程為參數(shù))表示的圖形為()

  • A:直線
  • B:圓
  • C:橢圓
  • D:雙曲線

答 案:B

解 析:即半徑為1的圓,圓心在原點

3、過點(-2,2)與直線x+3y-5=0平行的直線是()

  • A:x+3y-4=0
  • B:3x+y+4=0
  • C:x+3y+8=0
  • D:3x-y+8=0

答 案:A

解 析:所求直線與x+3y-5=0平行,可設所求直線為x+3y+c=0,將點(一2,2)帶入直線方程,故-2+3×2+c=0,解得c=-4,因此所求直線為線為x+3y-4=0.

4、對滿足a>b的任意兩個非零實數(shù),下列不等式成立的是() ?

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:A錯誤,例如-2>4,而 B錯誤,例如:-10>100,而 C錯誤,例如:-1>-2,而

主觀題

1、設函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點((1,f(1))處的切線方程;
(II)求f(x)的極值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得時,f'(x)時,f'(x)>O.故f(x)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增.因此f(x)在時取得極小值

2、已知數(shù)列的前n項和 求證:是等差數(shù)列,并求公差和首項。 ?

答 案: ?

3、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.

答 案:由已知得解得

4、設函數(shù)f(x)= (Ⅰ)求f(x)的單調(diào)區(qū)間; (Ⅱ)求 f(x)的極值

答 案:(Ⅰ)函數(shù)的定義域為 (Ⅱ) ?

填空題

1、不等式的解集為() ?

答 案:

解 析:

2、橢圓的中心在原點,一個頂點和一個焦點分別是直線x+3y-6與兩坐標軸的交點,則此橢圓的標準方程為() ?

答 案:

解 析:原直線方程可化為交點(6,0),(0,2). 當點(6,0)是橢圓一個焦點,點(0,2) 是橢圓一個頂點時,c=6,b=2,當點(0,2) 是橢圓一個焦點,(6,0) 是橢圓一個頂點時,c=2,b-6,

網(wǎng)友評論

0
發(fā)表評論

您的評論需要經(jīng)過審核才能顯示

精彩評論

最新評論
?