2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》10月4日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過每日?qǐng)?jiān)持練習(xí),逐步提升考試成績。
單選題
1、在△ABC中,若lgsinA-lgsinB-lgcos=lg2,則△ABC是()
- A:以A為直角的三角形
- B:b=c的等腰三角形
- C:等邊三角形
- D:鈍角三角形
答 案:B
解 析:判斷三角形的形狀,條件是用一個(gè)對(duì)數(shù)等式給出先將對(duì)數(shù)式利用對(duì)數(shù)的運(yùn)算法則整理。 ∵lgsinA-lgsinB-lgcos=lg2,由對(duì)數(shù)運(yùn)算法則可得,左 兩個(gè)對(duì)數(shù)底數(shù)相等則真數(shù)相等:即2sinBcosC=sinA 在△ABC中,∵A+B+C=180°,∴A=180°-(B+C), 故為等腰三角形
2、已知復(fù)數(shù)z=a+bi,其中a,且b≠0,則() ?
- A:
- B:
- C:
- D:
答 案:C
解 析:注意區(qū)分 ?
3、直線3x-4y-9=0與圓(θ為參數(shù))的位置關(guān)系是
- A:相交但直線不過圓心
- B:相交但直線通過圓心
- C:相切
- D:相離
答 案:A
解 析:方法一: 圓心O(0,0),r=2,則圓心O到直線的距離為
0
4、5名高中畢業(yè)生報(bào)考3所院校,每人只能報(bào)一所院校,則有()種不同的報(bào)名方法 ?
- A:
- B:
- C:
- D:
答 案:C
解 析:將院??闯稍?高中生看成位置,由重復(fù)排列的元素、位置的條件口訣: “元素可挑剩,位置不可缺”,重復(fù)排列的種數(shù)共有種,即將元素的個(gè)數(shù)作為底數(shù),位置的個(gè)數(shù)作為指數(shù).即:元素(院校)的個(gè)數(shù)為 3,位置(高中生)的個(gè)數(shù)為5,共有種。 ?
主觀題
1、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點(diǎn)((1,f(1))處的切線方程;
(II)求f(x)的極值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得當(dāng)時(shí),f'(x)
2、某工廠每月生產(chǎn)x臺(tái)游戲機(jī)的收入為R(x)=+130x-206(百元),成本函數(shù)為C(x)=50x+100(百元),當(dāng)每月生產(chǎn)多少臺(tái)時(shí),獲利潤最大?最大利潤為多少? ?
答 案:利潤 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306 法一:用二次函數(shù)當(dāng)a<0時(shí)有最大值 是開口向下的拋物線,有最大值 法二:用導(dǎo)數(shù)來求解 因?yàn)閤=90是函數(shù)在定義域內(nèi)唯一駐點(diǎn) 所以x=90是函數(shù)的極大值點(diǎn),也是函數(shù)的最大值點(diǎn),其最大值為L(90)=3294 ?
3、為了測(cè)河的寬,在岸邊選定兩點(diǎn)A和B,望對(duì)岸標(biāo)記物C,測(cè)得AB=120m,求河的寬
答 案:如圖, ∵∠C=180°-30°-75°=75° ∴△ABC為等腰三角形,則AC=AB=120m 過C做CD⊥AB,則由Rt△ACD可求得CD==60m, 即河寬為60m ?
4、建筑一個(gè)容積為8000,深為6m的長方體蓄水池,池壁每的造價(jià)為15元,池底每的造價(jià)為30元。(I)把總造價(jià)y(元)表示為長x(m)的函數(shù);(Ⅱ)求函數(shù)的定義域 ?
答 案:
填空題
1、的展開式是()
答 案:
解 析:
2、lg(tan43°tan45°tan47°)=() ?
答 案:0
解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0