133職教網(wǎng):包含各種考證等職教知識

網(wǎng)站首頁

您的位置:首頁 學歷類成考高起點 → 2023年09月30日成考高起點每日一練《數(shù)學(文史)》

2023年09月30日成考高起點每日一練《數(shù)學(文史)》

2023/09/30 作者:匿名 來源:本站整理

2023年成考高起點每日一練《數(shù)學(文史)》9月30日專為備考2023年數(shù)學(文史)考生準備,幫助考生通過每日堅持練習,逐步提升考試成績。

單選題

1、已知雙曲線上一點到兩焦點(-5,0),(5,0)距離之差的絕對值等于6,則雙曲線方程為() ?

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:由已知條件知雙曲線焦點在x軸上屬于第一類標準式,又知c=5,2a=6, ∴a=3,∴所求雙曲線的方程為 ?

2、設函數(shù)f(x十1)=2x+2,則f(x)=()

  • A:2x-1
  • B:2x
  • C:2x+1
  • D:2x+2

答 案:B

解 析:f(x十1)=2x+2=2(x+1),令t=x+1,故f(t)=2t,把t換成x,因此f(x)=2x.

3、袋中有6個球,其中4個紅球,2個白球,從中隨機取出2個球,則這2個球都為紅球的概率為()

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:兩個球都是紅球的概率為

4、下列函數(shù)中,為奇函數(shù)的是()

  • A:y=cos2x
  • B:y=sinx
  • C:y=2-x
  • D:y=x+1

答 案:B

解 析:當f(-x)=-f(x)時,函數(shù)f(x)是奇函數(shù),四個選項中只有選項B符合,故選B選項.

主觀題

1、已知等差數(shù)列前n項和 (Ⅰ)求通項的表達式 (Ⅱ)求的值 ?

答 案:(Ⅰ)當n=1時,由 也滿足上式,故=1-4n(n≥1) (Ⅱ)由于數(shù)列是首項為公差為d=-4的等差數(shù)列,所以是首項為公差為d=-8,項數(shù)為13的等差數(shù)列,于是由等差數(shù)列前n項和公式得: ?

2、每畝地種果樹20棵時,每棵果樹收入90元,如果每畝增種一棵,每棵果樹收入就下降3元,求使總收入最大的種植棵數(shù). ?

答 案:設每畝增種x棵,總收入味y元,則每畝種樹(20+x)棵,由題意知增種x棵后每棵收入為(60-3x) 則有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 當x=5時,y有最大值,所以每畝地最多種25棵

3、設函數(shù)
(I)求f'(2);
(II)求f(x)在區(qū)間[一1,2]的最大值與最小值.

答 案:(I)因為,所以f'(2)=3×22-4=8.(II)因為x<-1,f(-1)=3.f(2)=0.
所以f(x)在區(qū)間[一1,2]的最大值為3,最小值為

4、設函數(shù)f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的單調(diào)區(qū)間

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 當x<-3時,f'(x)>0; 當-32時,f'(x)>0; 故f(x)的單調(diào)遞減區(qū)間為(-3,2),f(x)的單調(diào)遞增區(qū)間為(-∞,-3),(2,+∞) ?

填空題

1、函數(shù)的圖像與坐軸的交點共有()個 ?

答 案:2

解 析:當x=0,故函數(shù)與y軸交于(0,-1)點;令y=0,則有故函數(shù)與工軸交于(1,0)點,因此函數(shù)與坐標軸的交點共有2個

2、點(4,5)關于直線y=x的對稱點的坐標為()

答 案:(5,4)

解 析:點(4,5)關于直線y=x的對稱點為(5,4).

網(wǎng)友評論

0
發(fā)表評論

您的評論需要經(jīng)過審核才能顯示

精彩評論

最新評論
?