2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》9月29日專(zhuān)為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。
單選題
1、函數(shù)y=x2+1(x>0)的圖像在()
- A:第一象限
- B:第二象限
- C:第三象限
- D:第四象限
答 案:A
解 析:當(dāng)x>0時(shí),函數(shù)y=x2+1>0,因此函數(shù)的圖像在第一象限.
2、已知成等差數(shù)列,且為方程的兩個(gè)根,則的值為() ?
- A:
- B:
- C:
- D:
答 案:D
解 析:由根與系數(shù)的關(guān)系得由等差數(shù)列的性質(zhì)得
3、若函數(shù)y=f(x)在[-1,1]上是單調(diào)函數(shù),則使得y=f(sinx)必為單調(diào)函數(shù)的區(qū)間是() ?
- A:R
- B:[-1,1]
- C:
- D:[-sin1 ,sin1]
答 案:C
解 析:y=f(x)在[-1,1]上是單調(diào)函數(shù),所以y=f(x)的單調(diào)區(qū)間為[-1,1] ?
4、已知點(diǎn)M(-2,5),N(4,2),點(diǎn)P在上,且=1:2,則點(diǎn)P的坐標(biāo)為()
- A:
- B:(0,4)
- C:(8,2)
- D:(2,1)
答 案:B
解 析:由題意得: ?
主觀題
1、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面積.
答 案:因?yàn)锳= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面積
2、已知直線(xiàn)l的斜率為1,l過(guò)拋物線(xiàn)C:的焦點(diǎn),且與C交于A,B兩點(diǎn).
(I)求l與C的準(zhǔn)線(xiàn)的交點(diǎn)坐標(biāo);
(II)求|AB|.
答 案:(I)C的焦點(diǎn)為,準(zhǔn)線(xiàn)為由題意得l的方程為因此l與C的準(zhǔn)線(xiàn)的交點(diǎn)坐標(biāo)為(II)由得設(shè)A(x1,y1).B(x2,y2),則因此
3、已知三角形的一個(gè)內(nèi)角是,面積是周長(zhǎng)是20,求各邊的長(zhǎng). ?
答 案:設(shè)三角形三邊分別為a,b,c,∠A=60°, ?
4、設(shè)函數(shù)f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的單調(diào)區(qū)間
答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得
6-6m-36=-36
故m=1.
(Ⅱ)由(Ⅰ)得f'(x)=
令f'(x)=0,解得
當(dāng)x<-3時(shí),f'(x)>0;
當(dāng)-3
填空題
1、點(diǎn)(4,5)關(guān)于直線(xiàn)y=x的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為()
答 案:(5,4)
解 析:點(diǎn)(4,5)關(guān)于直線(xiàn)y=x的對(duì)稱(chēng)點(diǎn)為(5,4).
2、已知向量a=(3,2),b=(-4,x),且a⊥b,則x=() ?
答 案:6
解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6. ?