133職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁(yè)

您的位置:首頁(yè) 學(xué)歷類(lèi)成考高起點(diǎn) → 2023年09月29日成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》

2023年09月29日成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》

2023/09/29 作者:匿名 來(lái)源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》9月29日專(zhuān)為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。

單選題

1、函數(shù)y=x2+1(x>0)的圖像在()

  • A:第一象限
  • B:第二象限
  • C:第三象限
  • D:第四象限

答 案:A

解 析:當(dāng)x>0時(shí),函數(shù)y=x2+1>0,因此函數(shù)的圖像在第一象限.

2、已知成等差數(shù)列,且為方程的兩個(gè)根,則的值為() ?

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:由根與系數(shù)的關(guān)系得由等差數(shù)列的性質(zhì)得

3、若函數(shù)y=f(x)在[-1,1]上是單調(diào)函數(shù),則使得y=f(sinx)必為單調(diào)函數(shù)的區(qū)間是() ?

  • A:R
  • B:[-1,1]
  • C:
  • D:[-sin1 ,sin1]

答 案:C

解 析:y=f(x)在[-1,1]上是單調(diào)函數(shù),所以y=f(x)的單調(diào)區(qū)間為[-1,1] ?

4、已知點(diǎn)M(-2,5),N(4,2),點(diǎn)P在上,且=1:2,則點(diǎn)P的坐標(biāo)為()

  • A:
  • B:(0,4)
  • C:(8,2)
  • D:(2,1)

答 案:B

解 析:由題意得: ?

主觀題

1、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面積.

答 案:因?yàn)锳= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面積

2、已知直線(xiàn)l的斜率為1,l過(guò)拋物線(xiàn)C:的焦點(diǎn),且與C交于A,B兩點(diǎn).
(I)求l與C的準(zhǔn)線(xiàn)的交點(diǎn)坐標(biāo);
(II)求|AB|.

答 案:(I)C的焦點(diǎn)為,準(zhǔn)線(xiàn)為由題意得l的方程為因此l與C的準(zhǔn)線(xiàn)的交點(diǎn)坐標(biāo)為(II)由設(shè)A(x1,y1).B(x2,y2),則因此

3、已知三角形的一個(gè)內(nèi)角是,面積是周長(zhǎng)是20,求各邊的長(zhǎng). ?

答 案:設(shè)三角形三邊分別為a,b,c,∠A=60°, ?

4、設(shè)函數(shù)f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的單調(diào)區(qū)間

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 當(dāng)x<-3時(shí),f'(x)>0; 當(dāng)-32時(shí),f'(x)>0; 故f(x)的單調(diào)遞減區(qū)間為(-3,2),f(x)的單調(diào)遞增區(qū)間為(-∞,-3),(2,+∞) ?

填空題

1、點(diǎn)(4,5)關(guān)于直線(xiàn)y=x的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為()

答 案:(5,4)

解 析:點(diǎn)(4,5)關(guān)于直線(xiàn)y=x的對(duì)稱(chēng)點(diǎn)為(5,4).

2、已知向量a=(3,2),b=(-4,x),且a⊥b,則x=() ?

答 案:6

解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6. ?

網(wǎng)友評(píng)論

0
發(fā)表評(píng)論

您的評(píng)論需要經(jīng)過(guò)審核才能顯示

精彩評(píng)論

最新評(píng)論
?