133職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁(yè)

您的位置:首頁(yè) 學(xué)歷類(lèi)成考高起點(diǎn) → 2023年09月14日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023年09月14日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023/09/14 作者:匿名 來(lái)源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》9月14日專(zhuān)為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。

單選題

1、展開(kāi)式中,末3項(xiàng)的系數(shù)(a,x 均未知) 之和為() ?

  • A:22
  • B:12
  • C:10
  • D:-10

答 案:C

解 析:末三項(xiàng)數(shù)之和為

2、下列函數(shù)中,為奇函數(shù)的是()

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:當(dāng)f(-x)=-f(x),函數(shù)f(x)是奇函數(shù),只有選項(xiàng)B符合.

3、在△ABC中,已知2B= A+C,= ac,則B-A=() ?

  • A:0
  • B:
  • C:
  • D:

答 案:A

解 析:在△ABC中,A+B+C=π,A+C=π-B,① 因?yàn)?B=A+C,② 由①②得2B=π-B, 由③④得a=c。所以A=C,又所以△ABC為等邊三角形,則B-A=0 ?

4、設(shè)集合M={x||x-2|<1},N={x|x>2},則M∩N=()

  • A:{x|1<x<3}
  • B:{x|x>2}
  • C:{x|2<x<3}
  • D:{x|1<x<2}

答 案:C

解 析:M={x||x-2|<1}解得{x|-1<x-2<1}={x|1<x<3},故M∩N={x|2<x<3}

主觀題

1、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)寫(xiě)出向量關(guān)于基底{a,b,c}的分解式; (Ⅱ)求證: (Ⅲ)求證: ?

答 案:(Ⅰ)由題意知(如圖所示) ?

2、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)寫(xiě)出向量關(guān)于基底{a,b,c}的分解式 (Ⅱ)求證: (Ⅲ)求證: ?

答 案:(Ⅰ)由題意知(如圖所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c兩兩垂直 ?

3、建筑一個(gè)容積為8000,深為6m的長(zhǎng)方體蓄水池,池壁每的造價(jià)為15元,池底每的造價(jià)為30元。(I)把總造價(jià)y(元)表示為長(zhǎng)x(m)的函數(shù);(Ⅱ)求函數(shù)的定義域 ?

答 案:

4、已知直線l的斜率為1,l過(guò)拋物線C:的焦點(diǎn),且與C交于A,B兩點(diǎn).(I)求l與C的準(zhǔn)線的交點(diǎn)坐標(biāo);
(II)求|AB|.

答 案:(I)C的焦點(diǎn)為,準(zhǔn)線為由題意得l的方程為因此l與C的準(zhǔn)線的交點(diǎn)坐標(biāo)為(II)由,得設(shè)A(x1,y1),B(x2,y2),則因此

填空題

1、橢圓的中心在原點(diǎn),一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn)分別是直線x+3y-6與兩坐標(biāo)軸的交點(diǎn),則此橢圓的標(biāo)準(zhǔn)方程為() ?

答 案:

解 析:原直線方程可化為交點(diǎn)(6,0),(0,2). 當(dāng)點(diǎn)(6,0)是橢圓一個(gè)焦點(diǎn),點(diǎn)(0,2) 是橢圓一個(gè)頂點(diǎn)時(shí),c=6,b=2,當(dāng)點(diǎn)(0,2) 是橢圓一個(gè)焦點(diǎn),(6,0) 是橢圓一個(gè)頂點(diǎn)時(shí),c=2,b-6,

2、長(zhǎng)方體的長(zhǎng)、寬、高分別為2,3,6,則該長(zhǎng)方體的對(duì)角線長(zhǎng)為()

答 案:7

解 析:由題可知長(zhǎng)方體的底面的對(duì)角線長(zhǎng)為,則在由高、底面對(duì)角線、長(zhǎng)方體的對(duì)角線組成的三角形中,長(zhǎng)方體的對(duì)角線長(zhǎng)為

網(wǎng)友評(píng)論

0
發(fā)表評(píng)論

您的評(píng)論需要經(jīng)過(guò)審核才能顯示

精彩評(píng)論

最新評(píng)論
?