2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》8月26日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。
單選題
1、在△ABC中,若b=,c=則a等于()
- A:2
- B:
- C:
- D:無解
答 案:B
解 析:此題是已知兩邊和其中一邊的對(duì)角,解三角形時(shí),會(huì)出現(xiàn)一解、兩解、無解的情況,要注意這一點(diǎn).用余弦定理可得解出
2、展開式中,末3項(xiàng)的系數(shù)(a,x 均未知) 之和為() ?
- A:22
- B:12
- C:10
- D:-10
答 案:C
解 析:末三項(xiàng)數(shù)之和為
3、若甲:x>1,乙:則 ?
- A:甲是乙的必要條件,但不是乙的充分條件
- B:甲是乙的充分必要條件
- C:甲不是乙的充分條件,也不是乙的必要條件
- D:甲是乙的充分條件,但不是乙的必要條件
答 案:D
解 析:而故甲是乙的充分條件,但不是必要條件
4、給出下列兩個(gè)命題:①如果一條直線與一個(gè)平面垂直,則該直線與該平面內(nèi)的任意一條直線垂直②以二面角的棱上任意一點(diǎn)為端點(diǎn),在二面角的兩個(gè)面內(nèi)分別作射線,則這兩條射線所成的角為該二面角的平面角.則()
- A:①②都為真命題
- B:①為真命題,②為假命題
- C:①為假命題,②為真命題
- D:①②都為假命題
答 案:B
解 析:一條直線與平面垂直,則直線與平面內(nèi)的任意一條直線垂直,故①為真命題;二面角的兩條射線必須垂直于二面角的棱,故②為假命題,因此選B選項(xiàng).
主觀題
1、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)寫出向量關(guān)于基底{a,b,c}的分解式 (Ⅱ)求證: (Ⅲ)求證: ?
答 案:(Ⅰ)由題意知(如圖所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c兩兩垂直 ?
2、建筑一個(gè)容積為8000,深為6m的長(zhǎng)方體蓄水池,池壁每的造價(jià)為15元,池底每的造價(jià)為30元。(I)把總造價(jià)y(元)表示為長(zhǎng)x(m)的函數(shù);(Ⅱ)求函數(shù)的定義域 ?
答 案:
3、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點(diǎn)((1,f(1))處的切線方程;
(II)求f(x)的極值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得當(dāng)時(shí),f'(x)
4、已知直線l的斜率為1,l過拋物線C:的焦點(diǎn),且與C交于A,B兩點(diǎn).(I)求l與C的準(zhǔn)線的交點(diǎn)坐標(biāo);
(II)求|AB|.
答 案:(I)C的焦點(diǎn)為,準(zhǔn)線為由題意得l的方程為因此l與C的準(zhǔn)線的交點(diǎn)坐標(biāo)為(II)由,得設(shè)A(x1,y1),B(x2,y2),則因此
填空題
1、函數(shù)的圖像與坐標(biāo)軸的交點(diǎn)共有() ?
答 案:2
解 析:當(dāng)x=0時(shí),y=-2=-1,故函數(shù)與y軸交于(0,-1)點(diǎn),令y=0,則有故函數(shù)與x軸交于(1,0) 點(diǎn),因此函數(shù) 與坐標(biāo)軸的交點(diǎn)共有 2個(gè).
2、的展開式是()
答 案:
解 析: