2023年成考高起點每日一練《數(shù)學(xué)(文史)》8月24日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過每日堅持練習(xí),逐步提升考試成績。
單選題
1、() ?
- A:8
- B:14
- C:12
- D:10
答 案:B
解 析:
2、設(shè)α是三角形的一個內(nèi)角,若,則sinα=()
- A:
- B:
- C:
- D:
答 案:D
解 析:由題知0<α<兀,而,故,因此.
3、命題甲:x>y且xy>0,命題乙:則() ?
- A:甲是乙的充分條件,但不是必要條件
- B:甲是乙的必要條件,但不是充分條件
- C:甲是乙的充分必要條件
- D:甲不是乙的必要條件也不是乙的充分條件
答 案:A
解 析:
4、b=0是直線y=kx+b過原點的()
- A:充分但不必要條件
- B:必要但不充分條件
- C:充要條件
- D:既不充分也不必要條件
答 案:C
解 析:b=0直線y=kx+b過原點
主觀題
1、如圖:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小數(shù)表示,保留一位小數(shù)) ?
答 案:如圖 ?
2、設(shè)橢圓的中心是坐標(biāo)原點,長軸在x軸上,離心率已知點P到圓上的點的最遠(yuǎn)距離是求橢圓的方程 ?
答 案:由題意,設(shè)橢圓方程為 由 設(shè)P點到橢圓上任一點的距離為 d, 則在y=-b時,最大,即d也最大。 ?
3、已知等差數(shù)列前n項和 (Ⅰ)求通項的表達(dá)式 (Ⅱ)求的值 ?
答 案:(Ⅰ)當(dāng)n=1時,由得 也滿足上式,故=1-4n(n≥1) (Ⅱ)由于數(shù)列是首項為公差為d=-4的等差數(shù)列,所以是首項為公差為d=-8,項數(shù)為13的等差數(shù)列,于是由等差數(shù)列前n項和公式得: ?
4、已知直線l的斜率為1,l過拋物線C:的焦點,且與C交于A,B兩點.
(I)求l與C的準(zhǔn)線的交點坐標(biāo);
(II)求|AB|.
答 案:(I)C的焦點為,準(zhǔn)線為由題意得l的方程為因此l與C的準(zhǔn)線的交點坐標(biāo)為(II)由得設(shè)A(x1,y1).B(x2,y2),則因此
填空題
1、函數(shù)y=的定義域是()
答 案:[1,+∞)
解 析:要是函數(shù)y=有意義,需使 所以函數(shù)的定義域為{x|x≥1}=[1,+∞) ?
2、點(4,5)關(guān)于直線y=x的對稱點的坐標(biāo)為()
答 案:(5,4)
解 析:點(4,5)關(guān)于直線y=x的對稱點為(5,4).