2023年成考高起點每日一練《數(shù)學(文史)》8月16日專為備考2023年數(shù)學(文史)考生準備,幫助考生通過每日堅持練習,逐步提升考試成績。
單選題
1、某學校為新生開設(shè)了4門選修課程,規(guī)定每位新生至少要選其中3門,則一位新生不同的選課方案共有 ( )
- A:7種
- B:4種
- C:5種
- D:6種
答 案:C
2、對于函數(shù),有下列兩個命題:①如果c=o,那么y=f(x)的圖像經(jīng)過坐標原點②如果a<0,那么y=f(x)的圖像與x軸有公共點
則()
- A:①②都為真命題
- B:①為真命題,②為假命題
- C:①為假命題,②為真命題
- D:①②都為假命題
答 案:B
解 析:若c=0,則函數(shù)f(x)=ax2+bx過坐標原點,故①為真命題;若a<0,而,則函數(shù)f(x)=ax2+bx+c的圖像開口向下,與x軸沒有交點,故②為假命題。因此選B選項。
3、設(shè)函數(shù)f(x十1)=2x+2,則f(x)=()
- A:2x-1
- B:2x
- C:2x+1
- D:2x+2
答 案:B
解 析:f(x十1)=2x+2=2(x+1),令t=x+1,故f(t)=2t,把t換成x,因此f(x)=2x.
4、命題甲:x>y且xy>0,命題乙:則() ?
- A:甲是乙的充分條件,但不是必要條件
- B:甲是乙的必要條件,但不是充分條件
- C:甲是乙的充分必要條件
- D:甲不是乙的必要條件也不是乙的充分條件
答 案:A
解 析:
主觀題
1、已知等差數(shù)列前n項和 (Ⅰ)求通項的表達式 (Ⅱ)求的值 ?
答 案:(Ⅰ)當n=1時,由得 也滿足上式,故=1-4n(n≥1) (Ⅱ)由于數(shù)列是首項為公差為d=-4的等差數(shù)列,所以是首項為公差為d=-8,項數(shù)為13的等差數(shù)列,于是由等差數(shù)列前n項和公式得: ?
2、每畝地種果樹20棵時,每棵果樹收入90元,如果每畝增種一棵,每棵果樹收入就下降3元,求使總收入最大的種植棵數(shù). ?
答 案:設(shè)每畝增種x棵,總收入味y元,則每畝種樹(20+x)棵,由題意知增種x棵后每棵收入為(60-3x) 則有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 當x=5時,y有最大值,所以每畝地最多種25棵
3、設(shè)函數(shù)f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的單調(diào)區(qū)間
答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得
6-6m-36=-36
故m=1.
(Ⅱ)由(Ⅰ)得f'(x)=
令f'(x)=0,解得
當x<-3時,f'(x)>0;
當-3
4、設(shè)橢圓的中心是坐標原點,長軸在x軸上,離心率已知點P到圓上的點的最遠距離是求橢圓的方程 ?
答 案:由題意,設(shè)橢圓方程為 由 設(shè)P點到橢圓上任一點的距離為 d, 則在y=-b時,最大,即d也最大。 ?
填空題
1、不等式的解集是() ?
答 案:
解 析:或或
2、()
答 案:3
解 析: