2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》8月12日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。
單選題
1、直線3x-4y-9=0與圓(θ為參數(shù))的位置關(guān)系是
- A:相交但直線不過(guò)圓心
- B:相交但直線通過(guò)圓心
- C:相切
- D:相離
答 案:A
解 析:方法一: 圓心O(0,0),r=2,則圓心O到直線的距離為
0
2、已知空間向量i,j,k為兩兩垂直的單位向量,向量a=2i+3j+mk,若,則m=()
- A:-2
- B:-1
- C:0
- D:1
答 案:C
解 析:由題可知向量a=(2,3,m),故,解得m=0.
3、已知直線l:3x-2y-5=0,圓C:,則C上到l的距離為1的點(diǎn)共有()
- A:1個(gè)
- B:2個(gè)
- C:3個(gè)
- D:4個(gè)
答 案:D
解 析:由題可知圓的圓心為(1,-1),半徑為2 ,圓心到直線的距離為,即直線過(guò)圓心,因此圓C上到直線的距離為1的點(diǎn)共有4個(gè).
4、若則()
- A:
- B:
- C:
- D:
答 案:B
解 析:首先做出單位圓,然后根據(jù)問(wèn)題的約束條件,利用三角函數(shù)線找出滿足條件的a角取值范圍 ?
主觀題
1、建筑一個(gè)容積為8000,深為6m的長(zhǎng)方體蓄水池,池壁每的造價(jià)為15元,池底每的造價(jià)為30元。(I)把總造價(jià)y(元)表示為長(zhǎng)x(m)的函數(shù);(Ⅱ)求函數(shù)的定義域 ?
答 案:
2、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)寫出向量關(guān)于基底{a,b,c}的分解式 (Ⅱ)求證: (Ⅲ)求證: ?
答 案:(Ⅰ)由題意知(如圖所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c兩兩垂直 ?
3、已知直線l的斜率為1,l過(guò)拋物線C:的焦點(diǎn),且與C交于A,B兩點(diǎn).(I)求l與C的準(zhǔn)線的交點(diǎn)坐標(biāo);
(II)求|AB|.
答 案:(I)C的焦點(diǎn)為,準(zhǔn)線為由題意得l的方程為因此l與C的準(zhǔn)線的交點(diǎn)坐標(biāo)為(II)由,得設(shè)A(x1,y1),B(x2,y2),則因此
4、設(shè)函數(shù)f(x)= (Ⅰ)求f(x)的單調(diào)區(qū)間; (Ⅱ)求 f(x)的極值
答 案:(Ⅰ)函數(shù)的定義域?yàn)?img src="https://img2.meite.com/questions/202303/28642286bee9cc3.png" /> (Ⅱ) ?
填空題
1、橢圓的中心在原點(diǎn),一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn)分別是直線x+3y-6與兩坐標(biāo)軸的交點(diǎn),則此橢圓的標(biāo)準(zhǔn)方程為() ?
答 案:
解 析:原直線方程可化為交點(diǎn)(6,0),(0,2). 當(dāng)點(diǎn)(6,0)是橢圓一個(gè)焦點(diǎn),點(diǎn)(0,2) 是橢圓一個(gè)頂點(diǎn)時(shí),c=6,b=2,當(dāng)點(diǎn)(0,2) 是橢圓一個(gè)焦點(diǎn),(6,0) 是橢圓一個(gè)頂點(diǎn)時(shí),c=2,b-6,
2、長(zhǎng)方體的長(zhǎng)、寬、高分別為2,3,6,則該長(zhǎng)方體的對(duì)角線長(zhǎng)為()
答 案:7
解 析:由題可知長(zhǎng)方體的底面的對(duì)角線長(zhǎng)為,則在由高、底面對(duì)角線、長(zhǎng)方體的對(duì)角線組成的三角形中,長(zhǎng)方體的對(duì)角線長(zhǎng)為