133職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁(yè)

您的位置:首頁(yè) 學(xué)歷類成考高起點(diǎn) → 2023年08月29日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023年08月29日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023/08/29 作者:匿名 來(lái)源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》8月29日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。

單選題

1、給出下列兩個(gè)命題:①如果一條直線與一個(gè)平面垂直,則該直線與該平面內(nèi)的任意一條直線垂直②以二面角的棱上任意一點(diǎn)為端點(diǎn),在二面角的兩個(gè)面內(nèi)分別作射線,則這兩條射線所成的角為該二面角的平面角.則()

  • A:①②都為真命題
  • B:①為真命題,②為假命題
  • C:①為假命題,②為真命題
  • D:①②都為假命題

答 案:B

解 析:一條直線與平面垂直,則直線與平面內(nèi)的任意一條直線垂直,故①為真命題;二面角的兩條射線必須垂直于二面角的棱,故②為假命題,因此選B選項(xiàng).

2、在△ABC中,已知2B= A+C,= ac,則B-A=() ?

  • A:0
  • B:
  • C:
  • D:

答 案:A

解 析:在△ABC中,A+B+C=π,A+C=π-B,① 因?yàn)?B=A+C,② 由①②得2B=π-B, 由③④得a=c。所以A=C,又所以△ABC為等邊三角形,則B-A=0 ?

3、設(shè)A、B、C是三個(gè)隨機(jī)事件,用A、B、C的運(yùn)算關(guān)系()表示事件:B、C都發(fā)生,而A不發(fā)生 ?

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:選項(xiàng)A,表示A或B發(fā)生或C不發(fā)生,選項(xiàng)C,表示A不發(fā)生或B、C不發(fā)生.選項(xiàng)D,表示A發(fā)生且 B、C 不發(fā)生.

4、對(duì)滿足a>b的任意兩個(gè)非零實(shí)數(shù),下列不等式成立的是() ?

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:A錯(cuò)誤,例如-2>4,而 B錯(cuò)誤,例如:-10>100,而 C錯(cuò)誤,例如:-1>-2,而

主觀題

1、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點(diǎn)((1,f(1))處的切線方程;
(II)求f(x)的極值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得當(dāng)時(shí),f'(x)時(shí),f'(x)>O.故f(x)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增.因此f(x)在時(shí)取得極小值

2、已知數(shù)列的前n項(xiàng)和 求證:是等差數(shù)列,并求公差和首項(xiàng)。 ?

答 案: ?

3、為了測(cè)河的寬,在岸邊選定兩點(diǎn)A和B,望對(duì)岸標(biāo)記物C,測(cè)得AB=120m,求河的寬

答 案:如圖, ∵∠C=180°-30°-75°=75° ∴△ABC為等腰三角形,則AC=AB=120m 過(guò)C做CD⊥AB,則由Rt△ACD可求得CD==60m, 即河寬為60m ?

4、在△ABC中,B=120°,BC=4,△ABC的面積為,求AC.

答 案:由△ABC的面積為所以AB =4.因此所以

填空題

1、不等式的解集為() ?

答 案:

解 析:

2、的展開(kāi)式是()

答 案:

解 析:

網(wǎng)友評(píng)論

0
發(fā)表評(píng)論

您的評(píng)論需要經(jīng)過(guò)審核才能顯示

精彩評(píng)論

最新評(píng)論
?